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Rate of creation of the contacts between grains in a loose array
of particles submitted to an uniaxial pressure
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Abstract. Macroscopic resistivity measurements have been performed on TiC/Al2O3 random mixtures
submitted to uniaxial compression (0–95 kN). Such a random mixture exhibits an insulator-conductor
transition which appears at increasing force while decreasing the conductive composition of the TiC/Al2O3

mixture. It is demonstrated that the conductivity behavior may be understood in the framework of a site
percolation model. Finally, the rate of creation of the contacts between conductive grains is extracted from
the macroscopic resistivity measurements.

PACS. 45.70.Cc Static sandpiles; granular compaction – 72.80.Tm Composite materials

1 Introduction
In most applications for powder metallurgy, concern with
properties dictates that high densities be achieved in com-
paction. An external pressure is needed to both shape the
powder and promote higher packing densities. The ini-
tial transition with pressurization is from a loose array
of particles to a closer packing. The first response is rear-
rangement of the particles, giving a higher contact density
between grains. The rearrangement portion of compaction
is aided by hard particle surfaces (such as with oxides).
For metals, the point contacts subsequently deform as the
pressure increases (Hertz regime). Finally, metal particles
undergo extensive plastic deformation. For hard materials
(such as oxide or carbide), both fracture and deformation
are expected. The higher pressure behavior corresponds
to the fragmentation process while, in the lower pressure
behavior, generally appears plastic deformation events.

As the properties of granular media are known to de-
pend on the geometrical properties of the system, on the
properties of the grains themselves, but also on the prop-
erties of contacts between grains, electrical conductivity
of packings of conducting spheres submitted to uniaxial
pressure has been studied by Ammi et al. [1].

For a packing of conducting spheres or cylinders sub-
mitted to an uniaxial pressure, the macroscopic conductiv-
ity of the system, derived from Hertz microscopic law [2],
is expected to vary as σ ∝ F t. Such a law is not true
on the whole range of force. At low stress, grains rear-
range by rotations and local slidings and Hertz deforma-
tions play a little role. As a consequence, the power law
is not valid. At intermediate stress, all possible contacts
between grains are not created and the macroscopic re-
sistivity varies because of “Hertz effect” and because of
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contact density variations. At large force and for all con-
tacts realized, one expects t = 1/3 (microscopic expo-
nent derived from Hertz law). Practically, the plasticity
threshold is reached long before and other processes like
fracture may occur. As a consequence, the experimental
exponent t varies from 1/3 to 5/3, depending on the pow-
der under study. Generally, the exponent t is observed on
one or two decades in pressure. Two models have been
proposed to describe the electrical exponent t. In a first
model, an effective medium theory which takes into ac-
count the variation of the density of randomly distributed
good electrical contacts and the variation of the contact
conductance with applied stress has been considered [1].
As it is known that good contacts are not at all random
but rather lie along strength arms, the second model [1]
deals only with the backbone of the mechanical network
(strongest stresses network). The results described above
only deal with packing of conducting spheres. However,
interesting informations may be extracted from data reg-
istered with mixtures of insulating and conducting hard
materials. In this case, compaction process mostly con-
sists in a rearrangement of the grains. Thus, mixture con-
ductivity depends on the arrangement state through the
density of links between conducting grains (active links).
From different composite compositions submitted to uni-
axial pressure, one can study a model system for which the
active link density depends on the volume fraction of con-
ducting phase and on the applied force. Provided that one
is able to determine the variation of the contact density
with the conducting phase volume fraction, the density of
contacts between conducting grains may be determined.
Our goal, in this study, deals with a better understand-
ing of the contact density variation with applied uniaxial
pressure.



508 The European Physical Journal B

Fig. 1. Schematic representation of the home-made cell used
for resistance measurements under uniaxial compression.

2 Experimental details

Conducting TiC and insulating Al2O3 particles of mean
diameter 18 µm were used in this study. TiC and Al2O3

powders are weighted in order to obtain mixtures with dif-
ferent TiC (Al2O3) concentration in the solid phase φ(s)

TiC

(respectively φ
(s)
Al2O3

= 1 − φ(s)
TiC ). Powders are then me-

chanically mixed in a turbula during 20 min in order to
obtain random mixtures. SEM analysis was performed to
check the uniformity of the mixtures; SEM micrography
and X-ray cartography analysis do not indicate segrega-
tion of the two phases. As a consequence, it is assumed, in
the study, that the mixture is uniform. A constant weight
(0.5 g) of the mixture is packed in a cylindrical home-made
cell (see Fig. 1) in order to apply uniaxial vertical pres-
sure. The internal vertical walls are insulated with Al2O3

and the upper and lower walls consists in stainless steel
which allows one to prevent deformation of the cell and
insure electrical contacts. The samples are placed in an
MTS 810 universal testing machine and a uniaxial verti-
cal pressure is applied, growing from 0 to 95 kN. Electri-
cal resistance measurements are performed as a function
of applied force with a Keithley high performance multi-
meter (model 2000) which allows us to monitor either the
voltage drop (current source mode), either the current flow
(voltage source mode) or the resistance (ohmeter mode)
depending on the resistance range to be measured. The
measurements are done at increasing pressure as the force
is no more uniaxial on the decreasing part of the hystere-
sis [3]. A displacement sensor also allows to monitor the
height (h) of the pellet during uniaxial compression. As
the aspect ratio of the pellet is quite large (i.e.: diameter
over height is about 5), the inhomogeneous distribution of
force in the container has been neglected. This assump-
tion has been confirmed. Indeed, the resistance increases
monotonically with the number of layers and the differ-
ential resistance (slope of the the curve R(h)) is constant
provided that the aspect ratio of the pellet is larger than
about 3. From the height of the pellet, it is also possible
to determine the volume fraction of TiC (φTiC), the vol-

Fig. 2. Conductivity vs. force applied on TiC/Al2O3 random
mixtures with different TiC volume fraction in the solid phase

(φ
(s)
TiC).

ume fraction of Al2O3 (φAl2O3), the porosity (φp) of the
random composites and its variations with applied force.

3 Results and discussion

Figure 2 shows the conductivity as a function of the
applied force for different TiC(φ(s)

TiC)/Al2O3(φ(s)
Al2O3

) ran-
dom mixtures. For small applied force and low concentra-
tion of the conducting phase, the conductivity is about
10−7 S cm−1; the mixture conductivity is dominated by
the insulator. For larger applied force, the mixture con-
ductivity largely increases and the random mixture be-
comes conductive. The force intensity (Fc) which corre-
sponds to the insulator-conductor transition increases for
decreasing concentration of TiC in the solid phase. This
result is in qualitative agreement with previous data ob-
tained on mixtures of glass spheres and silver coated glass
spheres [4]. However, the power law (σ ∝ F t) extracted
from a packing of conducting spheres can not give ac-
count of the experimental conductivity variation shown
in Figure 2. In packings of conducting spheres, the macro-
scopic conductivity increases with applied stress due to the
microscopic strain-stress law at the contact between two
grains and to the resulting contact conductance variation.
Subsequently, the point contacts between grains likely do
not deform in our random mixtures which is reasonable
given the TiC and Al2O3 hardness. In this situation, the
compaction process of TiC/Al2O3 random mixtures con-
sists in rearrangements from a loose array of particles to a
closer packing. Such a result has also been demonstrated
by Baviera et al. [5]. From compressibility analysis, the
authors shows that compaction process of TiC powder
mostly consists in a rearrangement of the grain. As a con-
sequence, conductivity vs. force curves may result only in
a percolation phenomenon and contact conductance vari-
ations due to Hertz’s deformation of the particles may be
neglected.
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Fig. 3. Conductivity vs. volume fraction of TiC in the com-
posite (φTiC). (φTiC) is calculated from the apparent volume
of the pellet. Insulator-conductor transition takes place at a
constant critical volume φc

TiC = 19.1%.

Figure 3 shows the conductivity variations as a func-
tion of calculated TiC concentration in the composite
(φTiC). The different curves are obtained for different vol-
ume fraction of TiC in the solid phase (φ(s)

TiC). Figure 3
indicates that, given the φTiC experimental errors, the
insulator-conductor transition takes place at a constant
critical volume fraction of TiC in the composite (φc

TiC ≈
19.1%). The threshold for site percolation, well defined,
appears independent of force. The application of force,
which does not deform the grains, changes the contact
density between TiC neighboring grains (active contacts).
Accordingly, the composite behaviors may be interpreted
on the basis of a percolation model of existing or non-
existing contacts between grains [6] whose transition from
the non conductive to the conductive state occurs at forces
which may be described by some density function [j(F )].
At large enough force, the composite is in the conducting
state if and only if there exists an infinite path of coupled
TiC particles: this condition may be fulfilled if the TiC
concentration at least equals the critical volume fraction
φc

TiC. At lower force, the conducting particles are decou-
pled and the infinite conductive path breaks down.

Let us consider a site percolation problem on a ran-
dom lattice, s being the site density. The density of bonds
existing between nearest neighboring sites (p) is propor-
tional to the square of s [7], i.e. p ∝ s2. At the site per-
colation threshold, the site critical density is sc and the
bond density is pc (notice that pc is not the bond percola-
tion threshold). In real materials such as the TiC/Al2O3

composites under study, the TiC particles are equivalent
to sites and the links between conducting particles are
equivalent to bonds, thus p ∝ (φTiC)2. At the site perco-
lation threshold, one may write that the bond density is
pc ∝ (φc

TiC)2. As φc
TiC is the same for all composites, one

can notice that the bond density is constant at the site
percolation threshold (i.e. at s = sc, p = pc for all com-
posites). Thus, one can easily deduce the ratio between

Fig. 4. Proportion of active contacts vs. applied force F .

the link densities p(F, φ(s)
TiC) and pc:

p(F, φ(s)
TiC)

pc
=

(φTiC)2

(φc
TiC)2

(1)

p(F, φs
TiC) being the density of conductive links at applied

force F and for a TiC/Al2O3 composite whose volume
fraction of TiC in the solid phase is φs

TiC.
One can also define the proportion J(F ) of active con-

tacts at applied force F , J(F ) being defined by:

J(F ) =
p(F, φ(s)

TiC)

p∞(φ(s)
TiC)

(2)

where p∞(φ(s)
TiC) ∝ (φTiC(F = 100 kN))2 is the density of

active contacts at the maximum applied force. Thus, one
can easily deduce that:

J(F ) =
p(F, φ(s)

TiC)

p∞(φ(s)
TiC)

=
(

φTiC

φTiC(F = 100 kN)

)2

· (3)

We would like to mention, at this stage that although
equation (3) implies that J(F = 100 kN) equals 1, all
contacts between TiC neighboring particles are not neces-
sary conducting at 100 kN. Indeed, the density of active
links at forces larger than 100 kN is unknown. Neverthe-
less, the number of active contacts likely does not change
a lot for larger force as the relative density of the different
composites is constant for applied forces larger than about
95 kN.

Lines shown in Figure 4 correspond to the proportion
of active links J(F ) calculated from relation (3).

The experimental values of J(0) are slightly differ-
ent for composites with different compositions. Neverthe-
less, our values are compatible with the range [0.3–0.5]
determined in the vulnerability measurements of Ottavi
et al. [6]. It is well known that the proportion of con-
tacts which are active from the beginning (i.e. J(0) = α0)
strongly depends on the way the packing has been put
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Fig. 5. Rate of creation of the contact between grains calcu-
lated from J(F0) = α0 +

R F0
0

j(F )dF (see text).

together and the possible forces exerted on it afterwards.
It is the likely reason for our slightly different experimen-
tal values of J(0).

The curves, obtained for composites with various com-
positions, are clearly superimposed for applied force larger
than about 1 kN. Consequently, the proportion of active
contacts at applied force F is the same whatever is the
composition in the range 27–40%. This result can only be
understood if one assumes that the conductive and non
conductive contact densities vary in a same way with ap-
plied force F . In other words, it means that the J(F )
function also corresponds to the probability for a link be-
tween particles (whatever conductive or not) to exist at a
given applied force F .

Finally, one can deduce the rate of contact creation
j(F ) with applied force which is given by J(F0) = α0 +∫ F0

0 j(F )dF . j(F ) has been calculated by numerically de-
riving a fit of the J(F ) function shown in Figure 4. The
resulting j(F ) function is plotted in Figure 5. Contacts be-
tween grains are easily created at low force (smaller than
about 35 kN). This stage corresponds to a large varia-
tion of the relative density and thus to a transition from a
loose array of particles to a closer packing which induces
creation of a great number of new contacts between grains.
In the range 50–90 kN, contacts between grains are cre-
ated at a rate which decreases rapidly with applied force.

4 Conclusion

In summary, it has been shown that conductivity mea-
surements performed on a random mixture submitted to
uniaxial pressure may be understood in the framework of
a site percolation model. Moreover, such a macroscopic
conductivity measurement allows one to determine micro-
scopic informations about the rate of creation of the con-
tacts between conducting particles. Provided that the size
distribution of the conductive and non conductive grains
are the same, one can deduce the rate of creation of the
contact between particles (whatever conductive or not).
This work is a first step before studying more realistic sys-
tems used in powder metallurgy. For example, inhomoge-
neous distribution of pressure during compaction gives rise
to product exhibiting density gradient and thus poor me-
chanical strength. Work is in progress to study the effect of
an inhomogeneous distribution of pressure (“arching” ef-
fects). Another development concerns nanocristallized ma-
terials which consists in micron-scale particles containing
nanocristallites. In these systems, porosity is not only in-
tergranular but also intragranular which implies that con-
tacts can be created between particles and also between
nanocristallites.
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